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Template Synthesis of Ligands for Highly
Charged Metal Cations
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Macrocyclic and macrobicyclic ligands may enhance the stability of their metal
complexes due to the inherent entropic and kinetic properties of a ligand ring or
cage-type structure. In general, as the binding site becomes more encapsulated or
preformed the reorganization entropy decreases, leading to a relatively higher
formation constant for metal binding. Thus it would be expected that the forma-
tion constants be greatest for the series macrobicyclic > macrocyclic > exocyclic
(Figure 1).
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Fig. 1. Possible topologies for macrocyclic ligands.

For synthetic purposes, the idealized macrobicyclic structure in Figure 1 can be
viewed as a ‘capped’ tripod. We have explored a new binding subunit for this work,
2,3-dihydroxyterephthalamide. A highly successful example of this approach is
shown in Figure 2, where an essentially one-step synthesis gives a 50% isolated yield
of the macrocycle formed from six amide linkages.

In the quite different chemistry of the lanthanides we have used a conceptually
similar approach to prepare cage complexes of the lanthanides from which the
metal ion cannot escape without breaking a C—C or C—N bond. The proposed
structure for such a ytterbium complex is shown in Figure 3. This complex is
relatively hydrolytically stable. In contrast, the intermediate compounds with 1 or
2 methylene bridges are readily hydrolyzed since they allow ready exit of the metal
ion. The structures of several of these intermediates have been determined.
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Fig. 2. Template synthesis of ferric (bicapped TRENCAM).
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Fig. 3. A schematic drawing of the proposed structure of the completely encapsulated ytterbium compiex.
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Fig. 4. Normal pulse polarogram of Yb?* (L) in 0.3 M sodium triflate acetonitrile solution. Negative

potentials (V vs SCE) are plotted to the right and reduction currents are plotted upward. The inset shows
a plot of —E vs log (i, —i/i) for the normal pulse polarogram.
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The electrochemistry for the Yb complex shown in Figure 4 (along with the
electrochemical behavior) shows the +3 complex is stabilized by 10'* relative to the
+2 complex.
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